Química Inorgânica Avançada (IQU-708)

Química de Coordenação — Aula 2

Roberto B. Faria <u>faria@iq.ufrj.br</u> <u>www.iq.ufrj.br/~faria</u>

Departamento de Química Inorgânica

23/04/2024

EECC = Energia de estabilização do Campo Cristalino

 $\Delta_{o} = 10 \text{ Dq}$

Campo fraco $d^{1} = -(2/5) \Delta_{0} = -4 Dq$ $d^2 = -(4/5) \Delta_0 = -8 Dq$ $d^3 = -(6/5) \Delta_0 = -12 Dq$ $d^4 = -(3/5) \Delta_0 = -6 Dq$ $d^5 = zero$ $d^{6} = -(2/5) \Delta_{0} = -4 Dq$ $d^{7} = -(4/5) \Delta_{0} = -8 Dq$ $d^8 = -(6/5) \Delta_0 = -12 Dq$ $d^9 = -(3/5) \Delta_0 = -6 Dq$ $d^{10} = zero$

Campo forte $d^{1} = -(2/5) \Delta_{0} = -4 Dq$ $d^2 = -(4/5) \Delta_0 = -8 Dq$ $d^3 = -(6/5) \Delta_0 = -12 Dq$ $d^4 = -(8/5) \Delta_0 + P = -16 Dq + P$ $d^5 = -(10/5) \Delta_0 + 2P = -20 Dq + 2P$ $d^6 = -(12/5) \Delta_0 + 2P = -24 Dq + 2P$ $d^7 = -(9/5) \Delta_0 + P = -18 Dq + P$ $d^8 = -(6/5) \Delta_0 = -12 Dq$ $d^9 = -(3/5) \Delta_0 = -6 Dq$ d¹⁰ = zero

EECC = Energia de estabilização do Campo Cristalino

 $\Delta_{o} = 10 Dq$

Campo fraco (Dq)	Campo forte (Dq)
d1 = -4	d1 = -4
d² = -8	d² = -8
d ³ = -12	d ³ = -12
d4 = -6	d4 = -16 + P
d ⁵ = zero	d ⁵ = -20 + 2P
d ⁶ = -4	d ⁶ = -24 +2P
d ⁷ = -8	d ⁷ = -18 + P
d ⁸ = -12	d ⁸ = -12
d ⁹ = -6	d ⁹ = -6
d ¹⁰ = zero	d ¹⁰ = zero

Complexos mais inertes 1° Período de transição $Cr^{3+} d^3 EECC = -12 Dq$ $Co^{3+} d^6 EECC = -24 Dq (campo forte)$

 2° Período de transição (campo forte) $Ru^{2+} d^6$ EECC = -24 Dq $Ru^{3+} d^5$ EECC = -20 Dq $Rh^{3+} d^6$ EECC = -24 Dq

3º Período de transição (campo forte) Ir³⁺ d⁶ EECC = -24 Dq Pt²⁺ d⁸ EECC = -12 Dq

Pode-se concluir que uma elevada EECC contribui para a estabilidade (inércia) do complexo.

Sequência dos complexos inertes

1º Período de transição M²⁺ Cu < Cr < Mn < Fe < Co < Ni < V

1º Período de transição M³⁺ Mn < Ti < V < Fe < Co < Cr

Sequência dos complexos mais inertes

 1° Período de transição M²+ (campo fraco)

 Cu < Cr < Mn < Fe < Co < Ni < V</td>

 d9
 d4
 d5
 d6
 d7
 d8
 d3

 EECC
 -6
 -6
 0
 -4
 -8
 -12
 -12

Parece que a explicação das sequências não pode ser pela EECC.

1° Período de transição M³⁺ (campo forte) Mn < Ti < V < Fe < Co < Cr $d^4 d^1 d^2 d^5 d^6 d^3$ EECC -16 -4 -8 -20 -24 -12

Mecanismo dissociativo $[M(OH_2)_6]^{n+} \rightarrow H_2O + [M(OH_2)_5]^{n+}$ (estado de transição pentacoordenado) $[M(OH_2)_5]^{n+} + L \rightarrow [M(OH_2)_5L]^{n+}$

Mecanismo associativo $[M(OH_2)_6]^{n+} + L \rightarrow [M(OH_2)_6 L]^{m+}$ (estado de transição heptacoordenado) $[M(OH_2)_6 L]^{m+} \rightarrow [M(OH_2)_5 L]^{m+} + H_2O$

Energia dos orbitais d, em diferentes geometrias (Dq)

	O _h	BPT	PBQ	BPP
d(z ²)	6	7,07	0,86	4,93
d(x ² -y ²)	6	-0,82	9,14	2,82
d(xy)	-4	-0,82	-0,86	2,82
d(xz)	-4	-2,72	-4,57	-5,28
d(yz)	-4	-2,72	-4,57	-5,28

O_h = octaedro (NC = 6) BPT = bipirâmide trigonal (NC = 5) PBQ = pirâmide de base quadrada (NC = 5) BPP = bipirâmide pentagonal (NC = 7)

ET = Estado de transição EACC = Energia de ativação = = EECC_{geometria ET} - EECC_{geometria inicial}

Caso d¹

$O_h \rightarrow BPT$	EECC _{inicial} = -4	EECC _{ET} = -2,72	EACC = 1,28
$O_h \rightarrow PBQ$	EECC _{inicial} = -4	EECC _{ET} = -4,57	EACC = -0,57
$O_h \rightarrow BPP$	EECC _{inicial} = -4	EECC _{ET} = -5,28	EACC = -1,28

Energia dos orbitais d, em diferentes geometrias (Dq)

	O _h	BPT	PBQ	BPP
d(z ²)	6	7,07	0,86	4,93
d(x ² -y ²)	6	-0,82	9,14	2,82
d(xy)	-4	-0,82	-0,86	2,82
d(xz)	-4	-2,72	-4,57	-5,28
d(yz)	-4	-2,72	-4,57	-5,28

O_h = octaedro (NC = 6) BPT = bipirâmide trigonal (NC = 5) PBQ = pirâmide de base quadrada (NC = 5) BPP = bipirâmide pentagonal (NC = 7)

Caso d ²			
$O_h \rightarrow BPT$	EECC _{inicial} = -8	EECC _{ET} = -5,44	EACC = 2,56
$O_h \rightarrow PBQ$	EECC _{inicial} = -8	EECC _{ET} = -9,14	EACC = -1,14
$O_h \rightarrow BPP$	EECC _{inicial} = -8	EECC _{ET} = -10,56	EACC = -2,56

Energia de ativação (EACC) – campo fraco				
	BPT	PBQ	BPP	
dı	1,28	-0,57	-1,28	
d²	2,56	-1,14	-2,56	
d ³	5,74	2,00	4,26	
d4	-1,08	-3,14	1,08	
d ⁵	0,0	0,0	0,0	
d ⁶	1,28	-0,57	-1,28	
d ⁷	2,56	-1,14	-2,56	
d ⁸	5,74	2,00	4,26	
d 9	-1,08	-3,14	1,08	

O_h = octaedro (NC = 6) BPT = bipirâmide trigonal (NC = 5) PBQ = pirâmide de base quadrada (NC = 5) BPP = bipirâmide pentagonal (NC = 7)

Por que os complexos octaédricos de Ni²⁺ (d⁸) são mais inertes que os de Cr²⁺ (d⁴)?

Quais devem ser os mecanismos de troca de ligante para os complexos octaédricos de Ni²⁺ (d⁸) e Cr²⁺ (d⁴)?

Energia de ativação (EACC) – campo fraco

	BPT	PBQ	BPP
d¹	1,28	-0,57	-1,28
d²	2,56	-1,14	-2,56
d ³	5,74	2,00	4,26
d4	-1,08	-3,14	1,08
d ⁵	0,0	0,0	0,0
d ⁶	1,28	-0,57	-1,28
d ⁷	2,56	-1,14	-2,56
d ⁸	5,74	2,00	4,26
d ⁹	-1,08	-3,14	1,08

O_h = octaedro (NC = 6) BPT = bipirâmide trigonal (NC = 5) PBQ = pirâmide de base quadrada (NC = 5) BPP = bipirâmide pentagonal (NC = 7)

Por que os complexos octaédricos de Cr³⁺ (d³) são os mais inertes do primeiro período de transição?

Energia de ativação (EACC) – campo fraco

	BPT	PBQ	BPP
d¹	1,28	-0,57	-1,28
d²	2,56	-1,14	-2,56
d ³	5,74	2,00	4,26
d4	-1,08	-3,14	1,08
d ⁵	0,0	0,0	0,0
d ⁶	1,28	-0,57	-1,28
d ⁷	2,56	-1,14	-2,56
d ⁸	5,74	2,00	4,26
d ⁹	-1,08	-3,14	1,08

Qual deve ser o mecanismo de troca de ligante para os complexos octaédricos de Cr³⁺ (d³)?

> O_h = octaedro (NC = 6) BPT = bipirâmide trigonal (NC = 5) PBQ = pirâmide de base quadrada (NC = 5) BPP = bipirâmide pentagonal (NC = 7)

Sequência dos complexos mais inertes

1° Período de transição M2+ (campo fraco)Cu < Cr < Mn < Fe < Co < Ni < V</td>d9d4d5d66-6-6-6-6-4EACC (PBQ)-3,14-3,140,0-0,57-1,142,00

Note que:

- Quanto menor a EECC, mais inerte

- Quanto maior a EACC, mais inerte

A EACC (PBQ) explica as extremidades desta sequência, sendo um argumento um pouco melhor do que a EECC de cada complexo.

Energia de ativação (EACC) – campo forte

	BPT	PBQ	BPP
d¹	1,28	-0,57	-1,28
d²	2,56	-1,14	-2,56
d ³	5,74	2,00	4,26
d4	7,02	1,43	2,98
d ⁵	8,30	0,86	1,70
d ⁶	11,48	4,00	8,52
d ⁷	4,66	-1,14	5,34
d ⁸	5,74	2,00	4,26
d ⁹	-1,08	-3,14	1,08

O_h = octaedro (NC = 6) BPT = bipirâmide trigonal (NC = 5) PBQ = pirâmide de base quadrada (NC = 5) BPP = bipirâmide pentagonal (NC = 7)

Por que os complexos de Rh³⁺ (d⁶) e lr³⁺(d⁶) são muito inertes?

22

Qual deve ser o mecanismo de troca de ligante para os complexos octaédricos de Rh³⁺ (d⁶) e Ir³⁺(d⁶) ?

Energia	de ativaçad	D(EACC) -	campo forte
	BPT	PBQ	BPP
dı	1,28	-0,57	-1,28

-0,57

 $O_{\rm h}$ = octaedro (NC = 6) BPT = bipirâmide trigonal (NC = 5)PBQ = pirâmide de base quadrada (NC = 5)BPP = bipirâmide pentagonal (NC = 7)

u	2,50	- 4	-2,50
d ³	5,74	2,00	4,26
d4	7,02	1,43	2,98
d ⁵	8,30	0,86	1,70
d ⁶	11,48	4,00	8,52
d ⁷	4,66	-1,14	5,34
d ⁸	5,74	2,00	4,26
d ⁹	-1,08	-3,14	1,08

Sequência dos complexos mais inertes

1° Período de transição M3+ (campo forte)Mn < Ti < V < Fe < Co < Cr</td>d4d1d2d5d63EECC-16-16-4-8-20-24-12EACC (PBQ)1,43-0,57-1,140,864,002,00

Note que:

- Quanto menor a EECC, mais inerte

- Quanto maior a EACC, mais inerte

Nem a EECC de cada complexo, e nem a EACC(PBQ) conseguem explicar consistentemente esta sequência.

 $(A^{II})_{t}[B_{2}^{III}]_{o}O_{4}$ Normal

 $(B^{III})_{t}[A^{II}B^{III}]_{o}O_{4}$ Invertido

MgAl₂O₄ é o mineral espinélio (normal)

6A no centro das faces = (6/2)A = 3A 8A nos vértices = 8(1/8)A = 1A 4A nos cubos A = 4A Total = 8A

(4B por cubo B) × 4 = 16 B

(40 por cubo)×8 = 32 0

 $A_8B_{16}O_{32} = AB_2O_4$

A encontra-se num ambiente tetraédrico formado por 4 oxigênios

B encontra-se num centro octaédrico formado por 6 oxigênios

 $(A^{II})_t [B_2^{III}]_o O_4 \text{ Normal}$

(B^{III})_t[A^{II}B^{III}]_oO₄ Invertido

Por que o NiFe₂O₄ é um espinélio invertido?

Considera-se o íon O²⁻ como um ligante de campo fraco.

- Ni²⁺ d⁸ EESO = -8,45 Dq (grande preferência pelo sítio octaédrico)
- Fe³⁺ d⁵ EESO = o,o Dq (não tem preferência)

Como o Ni²⁺ tem grande preferência pelo sítio octaédrico, ao invés de formar

(Ni^{II})_t[Fe₂^{III}]_oO₄ Espinélio normal

o Ni²⁺ invade o sítio octaédrico e expulsa metade dos átomos de Fe³⁺ formando

(Fe^{III})_t[Ni^{II} Fe^{III}]_oO₄ Espinélio invertido

EESO (campo fraco) d1 -1,33 d² -2,67 **d**3 -8,45 d4 -4,22 d5 0,0 d⁶ -1,33**d**7 -2,67 d⁸ -8,45 **d**9 -4,22 d10 0,0

Por que a magnetita, Fe₃O₄ é um espinélio invertido?

A magnetita é, na verdade Fe^{II}Fe₂^{III}O₄. EESO (campo fraco) d1 -1,33 d² -2,67 EESO = -1,33 Dq (pequena preferência pelo sítio octaédrico) $Fe^{2+}d^6$ **d**3 -8,45 d4 -4,22 <u>EESO = 0,0 Dq (não tem preferência)</u> **Fe**³⁺ **d**⁵ d5 0,0 d⁶ -1,33Como o Fe²⁺ tem preferência (embora pequena) pelo sítio octaédrico, ao **d**7 -2,67 invés de formar d⁸ -8,45 (Fe^{II})_t[Fe₂^{III}]₀O₄ Espinélio normal **d**9 -4,22 d10 0,0

o Fe²⁺ invade o sítio octaédrico e expulsa metade dos átomos de Fe³⁺ formando

(Fe^{III})_t[Fe^{II} Fe^{III}]_oO₄ Espinélio invertido

Por qu	ue o N	/In ₃ O ₄ é um espinélio normal?	EESO (ca	mpo fraço)
	~ '		۵	-1 , 33
$O Mn_3$	0 ₄ e, n	a verdade Mn"Mn ₂ "'O ₄ .	d²	-2 , 67
			d ³	-8,45
Mn ²⁺	d 5	EESO = 0,0 Dg (não tem preferência)	d4	-4,22
			d ⁵	0,0
Mn3+	d4	EESO – 1/ 22 Da (preferência pelo sítio octaédrico)	d ⁶	-1,33
	$VIII^3$ U^4 EESO = -4,22 DQ (preferencia pelo sitio octaeurico)		d ⁷	-2,67
C			d ⁸	-8,45
Como	O MIN3 ⁺	tem preferencia pelo sitio octaedrico, ele forma	d9	-4,22
			d10	0,0
		(Mn") _t [Mn ₂ ""] _o O ₄ Espinélio normal		

Por que o MnFe ₂ O ₄ é um espinélio normal?			EESO (campo fraco)	
Mn²+	d ⁵	EESO = o,o Dq (não tem preferência)	d ¹ d ²	-1,33 -2,67
Fe ³⁺	d5	EESO = o,o Dq (não tem preferência)	d ³ d ⁴ d ⁵	-8,45 -4,22 0.0
Íons +2 são mais estáveis quando tetracoordenados e íons +3 são mais estáveis quando hexacoordenados.			d ⁶ d ⁷	-1,33 -2,67
			d ⁸ d ⁹	-8,45 -4,22
			d ¹⁰	0,0

- Além dos compostos do tipo A^{II}B₂^{III}O₄, também podem possuem estrutura de espinélio compostos do tipo A^{IV}B₂^{II}O₄ e A^{VI}B₂^{IO}Q₄
- O metal A^{II} pode ser um cátion com raio iônico (NC = 6) entre 65 e 95 pm. Mg (Ca) - - - - Cr, Mn, Fe, Co, Ni, Cu, Zn Cd - - - Sn (Hg)
 Ca e Hg, que possuem raios grandes, 100 e 102 pm, respectivamente, não

formam espinélios com O²⁻, só com os ânions maiores.

 O metal B^{III} pode ser um cátion com raio iônico (NC = 6) entre 6o e 7o pm, e também o Al³⁺ (raio = 53 pm).

Al Ti, V, Cr, Mn, Fe, Co, Ni, - - - Ga Rh (In) In³⁺ (r = 80 pm), só forma espinélio com S²⁻ Os ânions podem ser: O²⁻ S²⁻ Se²⁻ Te²⁻